Filters, Cohen Sets and Consistent Extensions of The Erdös-Dushnik-Miller Theorem

نویسندگان

  • Saharon Shelah
  • Lee J. Stanley
چکیده

We present two different types of models where, for certain singular cardinals λ of uncountable cofinality, λ → (λ, ω + 1), although λ is not a strong limit cardinal. We announce, here, and will present in a subsequent paper, [7], that, for example, consistently, אω1 6→ (אω1 , ω+1) 2 and consistently, 20 6→ (20 , ω + 1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohen Sets and Consistent Extensions of the Erdös - Dushnik - Miller

We present two different types of models where, for certain singular cardinals λ of uncountable cofinality, λ → (λ, ω + 1) 2 , although λ is not a strong limit cardinal. We announce, here, and will present in a subsequent paper, [7], that, for example, consistently, ℵω 1 → (ℵω 1 , ω + 1) 2 and consistently, 2 ℵ 0 → (2 ℵ 0 , ω + 1) 2. §0. INTRODUCTION. For regular uncountable κ, the Erdös-Dushni...

متن کامل

On a Possible Continuous Analogue of the Szpilrajn Theorem and its Strengthening by Dushnik and Miller

The Szpilrajn theorem and its strengthening by Dushnik and Miller belong to the most quoted theorems in many fields of pure and applied mathematics as, for instance, order theory, mathematical logic, computer sciences, mathematical social sciences, mathematical economics, computability theory and fuzzy mathematics. The Szpilrajn theorem states that every partial order can be refined or extended...

متن کامل

Proof-Theoretic Strength of the Stable Marriage Theorem and Other Problems

We study the proof theoretic strength of several infinite versions of finite combinatorial theorem with respect to the standard Reverse Mathematics hierarchy of systems of second order arithmetic. In particular, we study three infinite extensions of the stable marriage theorem of Gale and Shapley. Other theorems studied include some results on partially ordered sets due to Dilworth and to Dushn...

متن کامل

On self-embeddings of computable linear orderings

The Dushnik–Miller Theorem states that every infinite countable linear ordering has a nontrivial self-embedding. We examine computability-theoretical aspects of this classical theorem.

متن کامل

Discrete Morse theory for the collapsibility of supremum sections

The Dushnik-Miller dimension of a poset ≤ is the minimal number d of linear extensions ≤1, . . . ,≤d of ≤ such that ≤ is the intersection of ≤1, . . . ,≤d. Supremum sections are simplicial complexes introduced by Scarf [13] and are linked to the Dushnik-Miller as follows: the inclusion poset of a simplicial complex is of Dushnik-Miller dimension at most d if and only if it is included in a supr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2000